The accurate estimation of physicochemical properties of ternary mixtures containing ionic liquids via artificial neural networks.

نویسندگان

  • John C Cancilla
  • Pablo Díaz-Rodríguez
  • Gemma Matute
  • José S Torrecilla
چکیده

The estimation of the density and refractive index of ternary mixtures comprising the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate, 2-propanol, and water at a fixed temperature of 298.15 K has been attempted through artificial neural networks. The obtained results indicate that the selection of this mathematical approach was a well-suited option. The mean prediction errors obtained, after simulating with a dataset never involved in the training process of the model, were 0.050% and 0.227% for refractive index and density estimation, respectively. These accurate results, which have been attained only using the composition of the dissolutions (mass fractions), imply that, most likely, ternary mixtures similar to the one analyzed, can be easily evaluated utilizing this algorithmic tool. In addition, different chemical processes involving ILs can be monitored precisely, and furthermore, the purity of the compounds in the studied mixtures can be indirectly assessed thanks to the high accuracy of the model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...

متن کامل

Density, viscosity and refractive index prediction of binary and ternary mixtures systems of ionic liquid

Different artificial neural networks architectures were developed to predict the density, viscosity and refractive index of binary and ternary mixtures of ionic liquids using their individual properties. All neural network implemented were evaluated using the root mean square error (RMSE) and the average percentage deviations (APD) for the training and validation phase. The individual models im...

متن کامل

Estimation of coal swelling index based on chemical properties of coal using artificial neural networks

Free swelling index (FSI) is an important parameter for cokeability and combustion of coals. In this research, the effects of chemical properties of coals on the coal free swelling index were studied by artificial neural network methods. The artificial neural networks (ANNs) method was used for 200 datasets to estimate the free swelling index value. In this investigation, ten input parameters ...

متن کامل

An Accurate Empirical Correlation to Estimate Sonic speed of Ionic Liquids

In recent years there has been a great deal of attention paid by researchers in investigating ionic liquids (ILs) mainly due to the tremendous potential that ionic liquids have in reaction and separation technology. Sonic speed is an important thermodynamic property of ionic liquids (ILs) and always chosen as a source to determine other properties. A database for the sonic speed of pure ILs cre...

متن کامل

Prediction of the changes in physicochemical properties of key lime juice during IR thermal processing by artificial neural networks

Thermal processing of the key lime juice leads to the inactivation of pectin methylesterase (PME) and the degradation of ascorbic acid (AA). These changes affect directly the cloud stability and color of the juice. In this study, an artificial neural network (ANN) model was applied for designing and developing an intelligent system for prediction of the thermal processing effects on the physico...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2015